Genomics (Ecol 553) Computational Lab

Week 5: Sept 18-20, 2012
Course webpage: http://genomics.arizona.edu/553/Lab
Topics

Perl: Getting acclimated and arrays
In class exercises:
1) Copy the directory ~deblasio/ecol553_student/ecol553_week5 to your home directory on login (note this has changed from last week, sorry)
2) Run the test_input.pl script. Copy test_input.pl to test_input_bad.pl. Use an editor to comment out “use strict” and remove the “my” keyword in test_input_bad.pl, save the changes, and run test_input_bad.pl
3) Edit test_input.pl (not the bad one) and add code to create a variable $color and prompt the user to enter his/her favorite color. At the end of the script, print the color entered.

4) Run the range_array.pl script. Then use an editor to change range_array.pl as follows:

a. Comment out the initial array range (use #)

b. Add code to create the array with range 111 to 333

5) Run the modified range_array.pl to test your changes. How many elements are in the new array?

6) Run the array_mod.pl script. Add a line of code at the end of the script to print the value of the last array element (use -1 as the array index.) Test your modified script.

7) Run the array_sort.pl script. Then modify the script to add the name of your favorite band to the beginning of the @arr array using a Perl function. (Add one line of code after the push).

8) Run the modified array_sort.pl. What position is your band’s name in when the array is sorted?

9) Open flow_demo.pl with an editor and look at the first 12 lines. What do you think the ‘exit’ statement does? Run the script and decide whether the first 12 lines are correctly written (if you need help, remove the comment character # from the use warnings line.)

10) In flow_demo.pl, comment out the exit on line 12 and look at lines 14-25. Add the code indicated by the comment on line 18 and re-run the script to test it.

11) In flow_demo.pl, comment out the exit on line 25 and look at the lines below that. Run the script and check to make sure you understand foreach, next, and last. Change the first “if” test to check for different numbers to skip and change the second “if” to jump out of the loop at a different number. Test your changes.

12) Look at hash_demo.pl and run it. Make sure you understand the code, as it is the basis for homework problem #3.
Homework (see back), To be completed by 11:59pm on Tuesday, Sept 25
All four files described below should be placed in a new directory on ice.hpc.arizona.edu, named: ~/ecol553_homework/homework3. To submit your homework, run the “turnin” script from inside the homework directory:

 turnin homework3
1) Write a Perl script called hw3_1.pl that prints the following:

The array has 512 columns and 64000 rows, so it has __ cells.

(Have Perl do the product calculation to fill in the ___.)
1) Create a text file called hw3_2.txt with the solution to the following (based on Question 4 at the end of Chapter 2 of the Cozens book):

Work out the order in which arithmetic operations in each of the following expressions would be computed. Rewrite each expression, including parentheses to reflect order of precedence. Compute each value. You may do this with Perl’s help, or entirely by hand … it’s up to you:

a) 12 + 12 / 4 - 4 * 5 + 7
b) 19 + -3 ** 5 / 2

3) Using the test_input.pl script as a starting point, create a new script named hw3_3.pl that prompts the user to enter two numbers, one at a time, each on a separate line. Your script should then calculate the product of the two numbers and print this result. Your final output line should look like this:
The product of ___ and ___ is ___.
(Fill in the ___’s with the input numbers and the result.)
4) Using the test_input.pl script as a starting point, create a new script named hw3_4.pl that prompts the user to enter an integer. Your script should use the string concatenation operator (.) to create a string that is the concatenation of the string CAG and the input number. Use the x operator to create the specified number of copies of the string CAG and print this result. Your final lines of output should look like this:

CAG___

Example:

CAG10

CAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
