
ECOL 553L
Perl Basics: Variables, Arrays and Hashes



Perl Comment Lines

2



Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

2



Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

• #!/usr/bin/perl

2



Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

• #!/usr/bin/perl
•  Other lines that begin with # are Comments

2



Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

• #!/usr/bin/perl
•  Other lines that begin with # are Comments

•  Comments can also start within a line:

2



Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

• #!/usr/bin/perl
•  Other lines that begin with # are Comments

•  Comments can also start within a line:

• $str = “yada” x 3;  # repeat yada 3 times

2



Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

• #!/usr/bin/perl
•  Other lines that begin with # are Comments

•  Comments can also start within a line:

• $str = “yada” x 3;  # repeat yada 3 times
•  Use comments to document the purpose of your script and to explain 

segments of code

2



Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

• #!/usr/bin/perl
•  Other lines that begin with # are Comments

•  Comments can also start within a line:

• $str = “yada” x 3;  # repeat yada 3 times
•  Use comments to document the purpose of your script and to explain 

segments of code
• # Remember to add a newline (\n) character to output

2



Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

• #!/usr/bin/perl
•  Other lines that begin with # are Comments

•  Comments can also start within a line:

• $str = “yada” x 3;  # repeat yada 3 times
•  Use comments to document the purpose of your script and to explain 

segments of code
• # Remember to add a newline (\n) character to output

• print "If you are called 'Sam', some files share your name! \n";

2



Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

• #!/usr/bin/perl
•  Other lines that begin with # are Comments

•  Comments can also start within a line:

• $str = “yada” x 3;  # repeat yada 3 times
•  Use comments to document the purpose of your script and to explain 

segments of code
• # Remember to add a newline (\n) character to output

• print "If you are called 'Sam', some files share your name! \n";

•  If you include good comments in your code, you'll thank yourself when 
you return to the code in six months or a year or more…

2



Perl Basic Data Types and Scalar variables

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:
• Examples:  "Perez Hilton",  "13", "#10 Downing St."

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:
• Examples:  "Perez Hilton",  "13", "#10 Downing St."

•Variables store pieces of data or information inside a Perl script

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:
• Examples:  "Perez Hilton",  "13", "#10 Downing St."

•Variables store pieces of data or information inside a Perl script
•A scalar variable can hold one single piece of data, which can 

be a string or a numeric type:

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:
• Examples:  "Perez Hilton",  "13", "#10 Downing St."

•Variables store pieces of data or information inside a Perl script
•A scalar variable can hold one single piece of data, which can 

be a string or a numeric type:
• $name = "Perez Hilton";

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:
• Examples:  "Perez Hilton",  "13", "#10 Downing St."

•Variables store pieces of data or information inside a Perl script
•A scalar variable can hold one single piece of data, which can 

be a string or a numeric type:
• $name = "Perez Hilton";
• $lucky_num = 13;

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:
• Examples:  "Perez Hilton",  "13", "#10 Downing St."

•Variables store pieces of data or information inside a Perl script
•A scalar variable can hold one single piece of data, which can 

be a string or a numeric type:
• $name = "Perez Hilton";
• $lucky_num = 13;
• $letter = "C";

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:
• Examples:  "Perez Hilton",  "13", "#10 Downing St."

•Variables store pieces of data or information inside a Perl script
•A scalar variable can hold one single piece of data, which can 

be a string or a numeric type:
• $name = "Perez Hilton";
• $lucky_num = 13;
• $letter = "C";
• $e_value = 1.3e-40;

3



Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:
• Examples:  "Perez Hilton",  "13", "#10 Downing St."

•Variables store pieces of data or information inside a Perl script
•A scalar variable can hold one single piece of data, which can 

be a string or a numeric type:
• $name = "Perez Hilton";
• $lucky_num = 13;
• $letter = "C";
• $e_value = 1.3e-40;

•Scalar variables have names that begin with $

3



Perl Operators

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

•  $last = "Rockwell";

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

•  $last = "Rockwell";

•  $full = $first . " " . $last;

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

•  $last = "Rockwell";

•  $full = $first . " " . $last;

•  $three_cheers = "Rah" x 3;

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

•  $last = "Rockwell";

•  $full = $first . " " . $last;

•  $three_cheers = "Rah" x 3;

• Comparison operators:   <   <=   ==  !=  >=  >   eq  ne

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

•  $last = "Rockwell";

•  $full = $first . " " . $last;

•  $three_cheers = "Rah" x 3;

• Comparison operators:   <   <=   ==  !=  >=  >   eq  ne

• if ($sum  <=  100) { … }

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

•  $last = "Rockwell";

•  $full = $first . " " . $last;

•  $three_cheers = "Rah" x 3;

• Comparison operators:   <   <=   ==  !=  >=  >   eq  ne

• if ($sum  <=  100) { … }
• if ($first  ne   "Sam") { … }

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

•  $last = "Rockwell";

•  $full = $first . " " . $last;

•  $three_cheers = "Rah" x 3;

• Comparison operators:   <   <=   ==  !=  >=  >   eq  ne

• if ($sum  <=  100) { … }
• if ($first  ne   "Sam") { … }

• Logical operators:  &&  ||  !

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

•  $last = "Rockwell";

•  $full = $first . " " . $last;

•  $three_cheers = "Rah" x 3;

• Comparison operators:   <   <=   ==  !=  >=  >   eq  ne

• if ($sum  <=  100) { … }
• if ($first  ne   "Sam") { … }

• Logical operators:  &&  ||  !

• if ($first  ne  "Sam" &&  $sum  <=  100)  { … }

4



Perl Operators
• Arithmetic operators:  +  -  *  /   **

•  $sum = 6 + 7;

•  $sum = $sum + 1;

•  $avg = $sum / $count;

•  $max16bit = 2 ** 16 – 1;

• String operators:    .  x
•  $first = "Sam";

•  $last = "Rockwell";

•  $full = $first . " " . $last;

•  $three_cheers = "Rah" x 3;

• Comparison operators:   <   <=   ==  !=  >=  >   eq  ne

• if ($sum  <=  100) { … }
• if ($first  ne   "Sam") { … }

• Logical operators:  &&  ||  !

• if ($first  ne  "Sam" &&  $sum  <=  100)  { … }
• if (! $found) { # keep looking!  … }

4



More about Perl Operators

5



More about Perl Operators
•We've seen that Perl operators have a precedence hierarchy, 

e.g. multiplication has a higher precedence than addition.  
You can use parentheses to alter order of evaluation:  

5



More about Perl Operators
•We've seen that Perl operators have a precedence hierarchy, 

e.g. multiplication has a higher precedence than addition.  
You can use parentheses to alter order of evaluation:  
•$value = (7 + 6) * 3; 

5



More about Perl Operators
•We've seen that Perl operators have a precedence hierarchy, 

e.g. multiplication has a higher precedence than addition.  
You can use parentheses to alter order of evaluation:  
•$value = (7 + 6) * 3; 

•With logical operations, "short circuit" evaluation is used.  For 
example, in the if statement below, $sum never gets tested…
why?

5



More about Perl Operators
•We've seen that Perl operators have a precedence hierarchy, 

e.g. multiplication has a higher precedence than addition.  
You can use parentheses to alter order of evaluation:  
•$value = (7 + 6) * 3; 

•With logical operations, "short circuit" evaluation is used.  For 
example, in the if statement below, $sum never gets tested…
why?
•$first = "Beverly";

5



More about Perl Operators
•We've seen that Perl operators have a precedence hierarchy, 

e.g. multiplication has a higher precedence than addition.  
You can use parentheses to alter order of evaluation:  
•$value = (7 + 6) * 3; 

•With logical operations, "short circuit" evaluation is used.  For 
example, in the if statement below, $sum never gets tested…
why?
•$first = "Beverly";
•$sum = 86 + 50;

5



More about Perl Operators
•We've seen that Perl operators have a precedence hierarchy, 

e.g. multiplication has a higher precedence than addition.  
You can use parentheses to alter order of evaluation:  
•$value = (7 + 6) * 3; 

•With logical operations, "short circuit" evaluation is used.  For 
example, in the if statement below, $sum never gets tested…
why?
•$first = "Beverly";
•$sum = 86 + 50;
•if ($first  eq  "Sam" &&  $sum  <=  100) 
{ … }

5



Using variables with print

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

•  An example in  "Beginning Perl":

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

•  An example in  "Beginning Perl":

• $name = "fred";

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

•  An example in  "Beginning Perl":

• $name = "fred";
• print "My name is ", $name, "\n";

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

•  An example in  "Beginning Perl":

• $name = "fred";
• print "My name is ", $name, "\n";

•  The same thing can be done this way:

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

•  An example in  "Beginning Perl":

• $name = "fred";
• print "My name is ", $name, "\n";

•  The same thing can be done this way:

• $name = "fred";

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

•  An example in  "Beginning Perl":

• $name = "fred";
• print "My name is ", $name, "\n";

•  The same thing can be done this way:

• $name = "fred";
• print "My name is $name \n";

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

•  An example in  "Beginning Perl":

• $name = "fred";
• print "My name is ", $name, "\n";

•  The same thing can be done this way:

• $name = "fred";
• print "My name is $name \n";

•  Or this way:

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

•  An example in  "Beginning Perl":

• $name = "fred";
• print "My name is ", $name, "\n";

•  The same thing can be done this way:

• $name = "fred";
• print "My name is $name \n";

•  Or this way:

• $name = "fred";

6



Using variables with print
•  Variables can be used inside double quoted strings.  This is called 

variable interpolation:

• $name = "Barney";
• $age = 90;
• print "$name is $age years old…get the 
wheelchair! \n";

•  An example in  "Beginning Perl":

• $name = "fred";
• print "My name is ", $name, "\n";

•  The same thing can be done this way:

• $name = "fred";
• print "My name is $name \n";

•  Or this way:

• $name = "fred";
• print "My name is " . $name . "\n";

6



Reading input from the keyboard

7

my $name = <STDIN>;
print "name is $name \n";
{ 

my $name = "Lucy";
print "\t inside the block, name is $name \n";

}
print "outside the block, name is $name \n";



Reading input from the keyboard
•Scripts are much more useful if they can read input from the user.  

The construct for doing this is: 

7

my $name = <STDIN>;
print "name is $name \n";
{ 

my $name = "Lucy";
print "\t inside the block, name is $name \n";

}
print "outside the block, name is $name \n";



Reading input from the keyboard
•Scripts are much more useful if they can read input from the user.  

The construct for doing this is: 
•$var = <STDIN>;

7

my $name = <STDIN>;
print "name is $name \n";
{ 

my $name = "Lucy";
print "\t inside the block, name is $name \n";

}
print "outside the block, name is $name \n";



Reading input from the keyboard
•Scripts are much more useful if they can read input from the user.  

The construct for doing this is: 
•$var = <STDIN>;

•STDIN is an example of a "handle" and we will learn more about 
these later.  The <> surrounding STDIN is called the "diamond" 
operator, and it reads one line of input.

7

my $name = <STDIN>;
print "name is $name \n";
{ 

my $name = "Lucy";
print "\t inside the block, name is $name \n";

}
print "outside the block, name is $name \n";



Reading input from the keyboard
•Scripts are much more useful if they can read input from the user.  

The construct for doing this is: 
•$var = <STDIN>;

•STDIN is an example of a "handle" and we will learn more about 
these later.  The <> surrounding STDIN is called the "diamond" 
operator, and it reads one line of input.

•We will practice with this script:

7

my $name = <STDIN>;
print "name is $name \n";
{ 

my $name = "Lucy";
print "\t inside the block, name is $name \n";

}
print "outside the block, name is $name \n";



A Bit About Variable Scope

8

my $name = "fred";  # Here $name has File Scope
print "name is $name \n";
{ 
my $name = "lucy"; # Here $name has block scope
print "inside the block, name is $name \n";

}
print "out here, name is $name \n";



A Bit About Variable Scope
•The scope of a variable refers to its lifetime within a script, i.e. 

when and where it is accessible.

8

my $name = "fred";  # Here $name has File Scope
print "name is $name \n";
{ 
my $name = "lucy"; # Here $name has block scope
print "inside the block, name is $name \n";

}
print "out here, name is $name \n";



A Bit About Variable Scope
•The scope of a variable refers to its lifetime within a script, i.e. 

when and where it is accessible.
•Sometimes you will want to restrict the scope of a variable using 

the my keyword, so that it won't interfere or collide with another 
variable having the same name.  This will be very important later 
when we learn about subroutines.

8

my $name = "fred";  # Here $name has File Scope
print "name is $name \n";
{ 
my $name = "lucy"; # Here $name has block scope
print "inside the block, name is $name \n";

}
print "out here, name is $name \n";



A Bit About Variable Scope
•The scope of a variable refers to its lifetime within a script, i.e. 

when and where it is accessible.
•Sometimes you will want to restrict the scope of a variable using 

the my keyword, so that it won't interfere or collide with another 
variable having the same name.  This will be very important later 
when we learn about subroutines.

•Here is an example:

8

my $name = "fred";  # Here $name has File Scope
print "name is $name \n";
{ 
my $name = "lucy"; # Here $name has block scope
print "inside the block, name is $name \n";

}
print "out here, name is $name \n";



Short cuts with Operators

9



Short cuts with Operators
•  We can add to a scalar variable like this:

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

• $sum += 8;   # add 8 to sum

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

• $sum += 8;   # add 8 to sum
•  This works for most operators:

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

• $sum += 8;   # add 8 to sum
•  This works for most operators:

• $product  *=  12;   # multiply product by 12

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

• $sum += 8;   # add 8 to sum
•  This works for most operators:

• $product  *=  12;   # multiply product by 12

•  Adding and subtracting one are so commonly done that there are even 
shorter shortcuts!

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

• $sum += 8;   # add 8 to sum
•  This works for most operators:

• $product  *=  12;   # multiply product by 12

•  Adding and subtracting one are so commonly done that there are even 
shorter shortcuts!

• $year  =  $year + 1;   # add 1 to year

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

• $sum += 8;   # add 8 to sum
•  This works for most operators:

• $product  *=  12;   # multiply product by 12

•  Adding and subtracting one are so commonly done that there are even 
shorter shortcuts!

• $year  =  $year + 1;   # add 1 to year
• $year  +=  1;          # add 1 to year

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

• $sum += 8;   # add 8 to sum
•  This works for most operators:

• $product  *=  12;   # multiply product by 12

•  Adding and subtracting one are so commonly done that there are even 
shorter shortcuts!

• $year  =  $year + 1;   # add 1 to year
• $year  +=  1;          # add 1 to year
• $year++;               # add 1 to year

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

• $sum += 8;   # add 8 to sum
•  This works for most operators:

• $product  *=  12;   # multiply product by 12

•  Adding and subtracting one are so commonly done that there are even 
shorter shortcuts!

• $year  =  $year + 1;   # add 1 to year
• $year  +=  1;          # add 1 to year
• $year++;               # add 1 to year

• $total--;              # subtract 1 from total

9



Short cuts with Operators
•  We can add to a scalar variable like this:

• $sum = $sum + 8;
•  Or we can use shorthand that combines the operator and =

• $sum += 8;   # add 8 to sum
•  This works for most operators:

• $product  *=  12;   # multiply product by 12

•  Adding and subtracting one are so commonly done that there are even 
shorter shortcuts!

• $year  =  $year + 1;   # add 1 to year
• $year  +=  1;          # add 1 to year
• $year++;               # add 1 to year

• $total--;              # subtract 1 from total
•  These are called autoincrement ++ and autodecrement --

9



Common Mistakes to watch out for!

10



Common Mistakes to watch out for!

• Forgetting the  ;  at the end of a statement

10



Common Mistakes to watch out for!

• Forgetting the  ;  at the end of a statement

• Mismatched parentheses  (  ), braces { }, brackets [  ], or 
quotes  ′ ′, " ", ` `

10



Common Mistakes to watch out for!

• Forgetting the  ;  at the end of a statement

• Mismatched parentheses  (  ), braces { }, brackets [  ], or 
quotes  ′ ′, " ", ` `

• Forgetting the  $  at the beginning of a variable name  (bare 
word error)

10



Common Mistakes to watch out for!

• Forgetting the  ;  at the end of a statement

• Mismatched parentheses  (  ), braces { }, brackets [  ], or 
quotes  ′ ′, " ", ` `

• Forgetting the  $  at the beginning of a variable name  (bare 
word error)

•  A mistake on the first line of the script (improper specification of 
the Perl interpreter – or possibly a space where it shouldn′t be)

10



Common Mistakes to watch out for!

• Forgetting the  ;  at the end of a statement

• Mismatched parentheses  (  ), braces { }, brackets [  ], or 
quotes  ′ ′, " ", ` `

• Forgetting the  $  at the beginning of a variable name  (bare 
word error)

•  A mistake on the first line of the script (improper specification of 
the Perl interpreter – or possibly a space where it shouldn′t be)

• Forgetting to close an output file (can cause missing output)

10



Common Mistakes to watch out for!

• Forgetting the  ;  at the end of a statement

• Mismatched parentheses  (  ), braces { }, brackets [  ], or 
quotes  ′ ′, " ", ` `

• Forgetting the  $  at the beginning of a variable name  (bare 
word error)

•  A mistake on the first line of the script (improper specification of 
the Perl interpreter – or possibly a space where it shouldn′t be)

• Forgetting to close an output file (can cause missing output)

•  Saving your script to a different folder than the folder you are 
running it from!

10



Common Mistakes to watch out for!

• Forgetting the  ;  at the end of a statement

• Mismatched parentheses  (  ), braces { }, brackets [  ], or 
quotes  ′ ′, " ", ` `

• Forgetting the  $  at the beginning of a variable name  (bare 
word error)

•  A mistake on the first line of the script (improper specification of 
the Perl interpreter – or possibly a space where it shouldn′t be)

• Forgetting to close an output file (can cause missing output)

•  Saving your script to a different folder than the folder you are 
running it from!

• For more ideas, see "Beginning Perl", chapter 9

10



Introduction to Perl, Part 3

11



Introduction to Perl, Part 3

11



Introduction to Perl, Part 3

•Today's Topics:

11



Introduction to Perl, Part 3

•Today's Topics:

11



Introduction to Perl, Part 3

•Today's Topics:

•Good Perl coding practices

11



Introduction to Perl, Part 3

•Today's Topics:

•Good Perl coding practices
•use warnings; use strict;

11



Introduction to Perl, Part 3

•Today's Topics:

•Good Perl coding practices
•use warnings; use strict;

•Perl Lists

11



Introduction to Perl, Part 3

•Today's Topics:

•Good Perl coding practices
•use warnings; use strict;

•Perl Lists
•Perl Arrays

11



Introduction to Perl, Part 3

•Today's Topics:

•Good Perl coding practices
•use warnings; use strict;

•Perl Lists
•Perl Arrays
•Perl Array Functions

11



Introduction to Perl, Part 3

•Today's Topics:

•Good Perl coding practices
•use warnings; use strict;

•Perl Lists
•Perl Arrays
•Perl Array Functions
•    push, pop, shift, unshift

11



Introduction to Perl, Part 3

•Today's Topics:

•Good Perl coding practices
•use warnings; use strict;

•Perl Lists
•Perl Arrays
•Perl Array Functions
•    push, pop, shift, unshift
•Stepping (iterating) through Perl Arrays

11



Introduction to Perl, Part 3

•Today's Topics:

•Good Perl coding practices
•use warnings; use strict;

•Perl Lists
•Perl Arrays
•Perl Array Functions
•    push, pop, shift, unshift
•Stepping (iterating) through Perl Arrays

•foreach,  $_
11



Good Practice: use strict;

12



Good Practice: use strict;
•To write better Perl code, include  use warnings;  and  use 

strict;

12



Good Practice: use strict;
•To write better Perl code, include  use warnings;  and  use 

strict;
•See "Beginning Perl" chapter 9

12



Good Practice: use strict;
•To write better Perl code, include  use warnings;  and  use 

strict;
•See "Beginning Perl" chapter 9

•These tools are called pragmas, and they help to minimize 
"unsafe" code such as possible variable name collisions and 
misspellings.

12



Good Practice: use strict;
•To write better Perl code, include  use warnings;  and  use 

strict;
•See "Beginning Perl" chapter 9

•These tools are called pragmas, and they help to minimize 
"unsafe" code such as possible variable name collisions and 
misspellings.

•The warnings pragma tells the Perl interpreter to output 
warnings when it sees possible typos (common syntax errors 
such as missing punctuation)

12



Good Practice: use strict;
•To write better Perl code, include  use warnings;  and  use 

strict;
•See "Beginning Perl" chapter 9

•These tools are called pragmas, and they help to minimize 
"unsafe" code such as possible variable name collisions and 
misspellings.

•The warnings pragma tells the Perl interpreter to output 
warnings when it sees possible typos (common syntax errors 
such as missing punctuation)

•The strict pragma requires all variables to be explicitly 
declared with keywords such as my or our prior to use.

12



Good Practice: use strict;
•To write better Perl code, include  use warnings;  and  use 

strict;
•See "Beginning Perl" chapter 9

•These tools are called pragmas, and they help to minimize 
"unsafe" code such as possible variable name collisions and 
misspellings.

•The warnings pragma tells the Perl interpreter to output 
warnings when it sees possible typos (common syntax errors 
such as missing punctuation)

•The strict pragma requires all variables to be explicitly 
declared with keywords such as my or our prior to use.

•To write the safer code for web-based scripts, look into using 
taint mode to protect against malicious user input:

12



Good Practice: use strict;
•To write better Perl code, include  use warnings;  and  use 

strict;
•See "Beginning Perl" chapter 9

•These tools are called pragmas, and they help to minimize 
"unsafe" code such as possible variable name collisions and 
misspellings.

•The warnings pragma tells the Perl interpreter to output 
warnings when it sees possible typos (common syntax errors 
such as missing punctuation)

•The strict pragma requires all variables to be explicitly 
declared with keywords such as my or our prior to use.

•To write the safer code for web-based scripts, look into using 
taint mode to protect against malicious user input:

•http://www.webreference.com/programming/perl/taint/ 
12



Perl Lists

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

• $name = "Greg Bear";

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

• $name = "Greg Bear";
• $lucky_num = 42;

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

• $name = "Greg Bear";
• $lucky_num = 42;

•Scalar variables have names that begin with $

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

• $name = "Greg Bear";
• $lucky_num = 42;

•Scalar variables have names that begin with $

•We can use Perl's list notation to assign values to more than 
one variable at a time:

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

• $name = "Greg Bear";
• $lucky_num = 42;

•Scalar variables have names that begin with $

•We can use Perl's list notation to assign values to more than 
one variable at a time:

• the following line does the same thing as the two code lines above

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

• $name = "Greg Bear";
• $lucky_num = 42;

•Scalar variables have names that begin with $

•We can use Perl's list notation to assign values to more than 
one variable at a time:

• the following line does the same thing as the two code lines above

• ($name, $lucky_num) = ("Greg Bear", 42);

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

• $name = "Greg Bear";
• $lucky_num = 42;

•Scalar variables have names that begin with $

•We can use Perl's list notation to assign values to more than 
one variable at a time:

• the following line does the same thing as the two code lines above

• ($name, $lucky_num) = ("Greg Bear", 42);
•Perl also has a range .. notation:

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

• $name = "Greg Bear";
• $lucky_num = 42;

•Scalar variables have names that begin with $

•We can use Perl's list notation to assign values to more than 
one variable at a time:

• the following line does the same thing as the two code lines above

• ($name, $lucky_num) = ("Greg Bear", 42);
•Perl also has a range .. notation:

• print  "Range from -30 to 5: ", (-30 .. 5), "\n";

13



Perl Lists
•Recall that a scalar variable can hold one single piece of data:

• assign values to the $name and $lucky_num scalar variables

• $name = "Greg Bear";
• $lucky_num = 42;

•Scalar variables have names that begin with $

•We can use Perl's list notation to assign values to more than 
one variable at a time:

• the following line does the same thing as the two code lines above

• ($name, $lucky_num) = ("Greg Bear", 42);
•Perl also has a range .. notation:

• print  "Range from -30 to 5: ", (-30 .. 5), "\n";
• print  "Range from J to V: ", ('J' .. 'V'), "\n";

13



Perl Arrays

14



Perl Arrays
• We can store a list of values in an array variable:

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

•   @items = ("Greg Bear",  42,  "X",  3.5e-107);

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

•   @items = ("Greg Bear",  42,  "X",  3.5e-107);

• Notice that array variable names begin with @

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

•   @items = ("Greg Bear",  42,  "X",  3.5e-107);

• Notice that array variable names begin with @

• To access a single element in an array we use a scalar name and a number 
called the array index inside square brackets [ ].  Array indices begin with 
zero!

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

•   @items = ("Greg Bear",  42,  "X",  3.5e-107);

• Notice that array variable names begin with @

• To access a single element in an array we use a scalar name and a number 
called the array index inside square brackets [ ].  Array indices begin with 
zero!

• print the name of an author

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

•   @items = ("Greg Bear",  42,  "X",  3.5e-107);

• Notice that array variable names begin with @

• To access a single element in an array we use a scalar name and a number 
called the array index inside square brackets [ ].  Array indices begin with 
zero!

• print the name of an author

• print "Darwin's Radio was written by ", $items[0], "\n";

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

•   @items = ("Greg Bear",  42,  "X",  3.5e-107);

• Notice that array variable names begin with @

• To access a single element in an array we use a scalar name and a number 
called the array index inside square brackets [ ].  Array indices begin with 
zero!

• print the name of an author

• print "Darwin's Radio was written by ", $items[0], "\n";

• print the answer to the universe

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

•   @items = ("Greg Bear",  42,  "X",  3.5e-107);

• Notice that array variable names begin with @

• To access a single element in an array we use a scalar name and a number 
called the array index inside square brackets [ ].  Array indices begin with 
zero!

• print the name of an author

• print "Darwin's Radio was written by ", $items[0], "\n";

• print the answer to the universe

• print $items[1], "\n";

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

•   @items = ("Greg Bear",  42,  "X",  3.5e-107);

• Notice that array variable names begin with @

• To access a single element in an array we use a scalar name and a number 
called the array index inside square brackets [ ].  Array indices begin with 
zero!

• print the name of an author

• print "Darwin's Radio was written by ", $items[0], "\n";

• print the answer to the universe

• print $items[1], "\n";

• print the last item in the list using -1 as the index

14



Perl Arrays
• We can store a list of values in an array variable:

•   assign values to the @items array variable

•   @items = ("Greg Bear",  42,  "X",  3.5e-107);

• Notice that array variable names begin with @

• To access a single element in an array we use a scalar name and a number 
called the array index inside square brackets [ ].  Array indices begin with 
zero!

• print the name of an author

• print "Darwin's Radio was written by ", $items[0], "\n";

• print the answer to the universe

• print $items[1], "\n";

• print the last item in the list using -1 as the index
• print $items[-1], "is a very small number! \n";

14



Adding/removing elements to/from Arrays

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable
•@items = ("Greg Bear",  42,  "X",  3.5e-107);

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•push (@items,  "Guster");

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•push (@items,  "Guster");

•We can remove (and retrieve) an item from the end of an 
array with the pop function:

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•push (@items,  "Guster");

•We can remove (and retrieve) an item from the end of an 
array with the pop function:

•$pop_band = pop (@items);

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•push (@items,  "Guster");

•We can remove (and retrieve) an item from the end of an 
array with the pop function:

•$pop_band = pop (@items);
•To add and remove items at the beginning of an array we can 

use the shift and unshift functions:

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•push (@items,  "Guster");

•We can remove (and retrieve) an item from the end of an 
array with the pop function:

•$pop_band = pop (@items);
•To add and remove items at the beginning of an array we can 

use the shift and unshift functions:
•use shift to remove and retrieve the first array element

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•push (@items,  "Guster");

•We can remove (and retrieve) an item from the end of an 
array with the pop function:

•$pop_band = pop (@items);
•To add and remove items at the beginning of an array we can 

use the shift and unshift functions:
•use shift to remove and retrieve the first array element
•$author = shift (@items);

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•push (@items,  "Guster");

•We can remove (and retrieve) an item from the end of an 
array with the pop function:

•$pop_band = pop (@items);
•To add and remove items at the beginning of an array we can 

use the shift and unshift functions:
•use shift to remove and retrieve the first array element
•$author = shift (@items);

•now insert a different author's name as the first element

15



Adding/removing elements to/from Arrays

•We can add an item to the end of an array with the push 
function:

•assign values to the @items array variable
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•push (@items,  "Guster");

•We can remove (and retrieve) an item from the end of an 
array with the pop function:

•$pop_band = pop (@items);
•To add and remove items at the beginning of an array we can 

use the shift and unshift functions:
•use shift to remove and retrieve the first array element
•$author = shift (@items);

•now insert a different author's name as the first element
•unshift (@items, "Kurt Vonnegut");

15



Stepping (Iterating) through Perl Arrays

16

  @items = ("Greg Bear",  42,  "X",  3.5e-107);
  foreach my  $element (@items) {
        print  "Element is: $element \n";
        if ( $element  == 42 ) {
               print "So long and thanks for all the fish!! \n";
        }
  }



Stepping (Iterating) through Perl Arrays

• Often it’s useful to step through an array element by element and do 
things with each value.  The foreach loop makes this easy to do:

16

  @items = ("Greg Bear",  42,  "X",  3.5e-107);
  foreach my  $element (@items) {
        print  "Element is: $element \n";
        if ( $element  == 42 ) {
               print "So long and thanks for all the fish!! \n";
        }
  }



Stepping (Iterating) through Perl Arrays

• Often it’s useful to step through an array element by element and do 
things with each value.  The foreach loop makes this easy to do:

16

  @items = ("Greg Bear",  42,  "X",  3.5e-107);
  foreach my  $element (@items) {
        print  "Element is: $element \n";
        if ( $element  == 42 ) {
               print "So long and thanks for all the fish!! \n";
        }
  }



Stepping (Iterating) through Perl Arrays

• Often it’s useful to step through an array element by element and do 
things with each value.  The foreach loop makes this easy to do:

• The foreach (*) loop is nice because you don't need to worry about how 
many elements the array contains.  The scalar value named after the 
foreach keyword refers to each element in turn and changes with each 
iteration of the loop.

16

  @items = ("Greg Bear",  42,  "X",  3.5e-107);
  foreach my  $element (@items) {
        print  "Element is: $element \n";
        if ( $element  == 42 ) {
               print "So long and thanks for all the fish!! \n";
        }
  }



Stepping (Iterating) through Perl Arrays

• Often it’s useful to step through an array element by element and do 
things with each value.  The foreach loop makes this easy to do:

• The foreach (*) loop is nice because you don't need to worry about how 
many elements the array contains.  The scalar value named after the 
foreach keyword refers to each element in turn and changes with each 
iteration of the loop.

• (*) In the Cozen's book for is used instead of foreach

16

  @items = ("Greg Bear",  42,  "X",  3.5e-107);
  foreach my  $element (@items) {
        print  "Element is: $element \n";
        if ( $element  == 42 ) {
               print "So long and thanks for all the fish!! \n";
        }
  }



The special "default" variable  $_

17

 print "Enter your name: ";
 <STDIN>;
 print "Your name is $_";

@names = ("Bob", "Carol", "Ted", "Alice");
foreach  (@names) {
    if ($_  eq  "Alice")  {
         print "You can have anything you want…\n";
    } else {
        print "May I help you, $_?\n";
    }
}



The special "default" variable  $_
•Perl has a special variable named $_  that gets assigned values 

by default if no other variable is explicitly named.

17

 print "Enter your name: ";
 <STDIN>;
 print "Your name is $_";

@names = ("Bob", "Carol", "Ted", "Alice");
foreach  (@names) {
    if ($_  eq  "Alice")  {
         print "You can have anything you want…\n";
    } else {
        print "May I help you, $_?\n";
    }
}



The special "default" variable  $_
•Perl has a special variable named $_  that gets assigned values 

by default if no other variable is explicitly named.
•Examples:

17

 print "Enter your name: ";
 <STDIN>;
 print "Your name is $_";

@names = ("Bob", "Carol", "Ted", "Alice");
foreach  (@names) {
    if ($_  eq  "Alice")  {
         print "You can have anything you want…\n";
    } else {
        print "May I help you, $_?\n";
    }
}



Other Array Functions: scalar and sort

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$num_items =  scalar (@items);

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$num_items =  scalar (@items);

•You may also see $#array being used to get the index of 
the last element in an array:

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$num_items =  scalar (@items);

•You may also see $#array being used to get the index of 
the last element in an array:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$num_items =  scalar (@items);

•You may also see $#array being used to get the index of 
the last element in an array:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$last_index =  $#items;

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$num_items =  scalar (@items);

•You may also see $#array being used to get the index of 
the last element in an array:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$last_index =  $#items;

•It is very easy to sort an array using the sort function:

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$num_items =  scalar (@items);

•You may also see $#array being used to get the index of 
the last element in an array:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$last_index =  $#items;

•It is very easy to sort an array using the sort function:
•@items = ("Greg Bear",  42,  "X",  3.5e-107);

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$num_items =  scalar (@items);

•You may also see $#array being used to get the index of 
the last element in an array:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$last_index =  $#items;

•It is very easy to sort an array using the sort function:
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•@sorted = sort (@items);

18



Other Array Functions: scalar and sort

•To find the number of elements in an array, use the scalar 
function:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$num_items =  scalar (@items);

•You may also see $#array being used to get the index of 
the last element in an array:

•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•$last_index =  $#items;

•It is very easy to sort an array using the sort function:
•@items = ("Greg Bear",  42,  "X",  3.5e-107);
•@sorted = sort (@items);
•print "The sorted items are @sorted \n";

18



The defined, exists functions for testing values

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

• The Perl defined function lets us check to see whether a variable has been 
given a value:

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

• The Perl defined function lets us check to see whether a variable has been 
given a value:
if (defined $name) {

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

• The Perl defined function lets us check to see whether a variable has been 
given a value:
if (defined $name) {
print "Name is $name \n";

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

• The Perl defined function lets us check to see whether a variable has been 
given a value:
if (defined $name) {
print "Name is $name \n";

}

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

• The Perl defined function lets us check to see whether a variable has been 
given a value:
if (defined $name) {
print "Name is $name \n";

}

• The exists function can be used to check whether an array element has been 
initialized:

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

• The Perl defined function lets us check to see whether a variable has been 
given a value:
if (defined $name) {
print "Name is $name \n";

}

• The exists function can be used to check whether an array element has been 
initialized:
my @names = ("Bud", "Cal", "Doc", "Edd");

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

• The Perl defined function lets us check to see whether a variable has been 
given a value:
if (defined $name) {
print "Name is $name \n";

}

• The exists function can be used to check whether an array element has been 
initialized:
my @names = ("Bud", "Cal", "Doc", "Edd");
if (exists $names[3]  && exists $names[4]) {

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

• The Perl defined function lets us check to see whether a variable has been 
given a value:
if (defined $name) {
print "Name is $name \n";

}

• The exists function can be used to check whether an array element has been 
initialized:
my @names = ("Bud", "Cal", "Doc", "Edd");
if (exists $names[3]  && exists $names[4]) {
print  "The name following $names[3] is $names[4] \n";

19



The defined, exists functions for testing values

• It is possible to declare a variable without defining it (assigning a value).  
Example:
my $name;  # Declared, not defined
my $name = “Joe”;  # Declared and defined

• The Perl defined function lets us check to see whether a variable has been 
given a value:
if (defined $name) {
print "Name is $name \n";

}

• The exists function can be used to check whether an array element has been 
initialized:
my @names = ("Bud", "Cal", "Doc", "Edd");
if (exists $names[3]  && exists $names[4]) {
print  "The name following $names[3] is $names[4] \n";

}

19



The chomp function for removing newlines

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

$name = <STDIN>;

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

$name = <STDIN>;

# Chomp off the newline

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

$name = <STDIN>;

# Chomp off the newline

chomp($name);

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

$name = <STDIN>;

# Chomp off the newline

chomp($name);

if ($name  eq "Doc") { 

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

$name = <STDIN>;

# Chomp off the newline

chomp($name);

if ($name  eq "Doc") { 

print "It only hurts when I laugh… \n";

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

$name = <STDIN>;

# Chomp off the newline

chomp($name);

if ($name  eq "Doc") { 

print "It only hurts when I laugh… \n";

}

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

$name = <STDIN>;

# Chomp off the newline

chomp($name);

if ($name  eq "Doc") { 

print "It only hurts when I laugh… \n";

}

•Don’t forget about chomp() – doing so often bites beginning Perl 
programmers!!!

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

$name = <STDIN>;

# Chomp off the newline

chomp($name);

if ($name  eq "Doc") { 

print "It only hurts when I laugh… \n";

}

•Don’t forget about chomp() – doing so often bites beginning Perl 
programmers!!!

• If your script is behaving strangely and you are reading an input file, there 
may be extra unprintable characters in the file.  You can use the cat 
command with options –vet to reveal these, i.e.

20



The chomp function for removing newlines

•When a line of text is read, it contains a newline character at the end.  
Often it is necessary to strip this character from the line, using the 
chomp() function

$name = <STDIN>;

# Chomp off the newline

chomp($name);

if ($name  eq "Doc") { 

print "It only hurts when I laugh… \n";

}

•Don’t forget about chomp() – doing so often bites beginning Perl 
programmers!!!

• If your script is behaving strangely and you are reading an input file, there 
may be extra unprintable characters in the file.  You can use the cat 
command with options –vet to reveal these, i.e.

• cat –vet  file.txt

20



Perl Flow Control: Looping with foreach 

21

@names = ("Bud", "Cal", "Doc", "Edd");
foreach   $n  (@names) {
     print  "Wassup  $n ?\n";   
     if  ($n   eq  "Doc")  {
          print   "Ha Ha Ha Ha Ha !!!! \n";
     }
}



Perl Flow Control: Looping with foreach 

•The foreach loop is used to step through array 
elements.  Below is an example that uses foreach 
and if.  Notice the matched pairs of curly braces { } 
and the indentation in the code:

21

@names = ("Bud", "Cal", "Doc", "Edd");
foreach   $n  (@names) {
     print  "Wassup  $n ?\n";   
     if  ($n   eq  "Doc")  {
          print   "Ha Ha Ha Ha Ha !!!! \n";
     }
}



Perl Flow Control: Looping with while 

22

$n = 10;
while ( $n > 0 ) {
     print "Subtracting 2 from $n \n";
     $n = $n – 2;
     print  "The result is  $n  \n";
}



Perl Flow Control: Looping with while 

•A looping construct that is not tied to an array is 
the while loop.  The code inside the while { … } 
statement block is executed repeatedly, as long 
as the condition remains true.

22

$n = 10;
while ( $n > 0 ) {
     print "Subtracting 2 from $n \n";
     $n = $n – 2;
     print  "The result is  $n  \n";
}



Perl Flow Control: Looping with while 

•A looping construct that is not tied to an array is 
the while loop.  The code inside the while { … } 
statement block is executed repeatedly, as long 
as the condition remains true.

•Example:

22

$n = 10;
while ( $n > 0 ) {
     print "Subtracting 2 from $n \n";
     $n = $n – 2;
     print  "The result is  $n  \n";
}



More Loop Control: next, last

23

foreach   $n  (@numbers) {
     if  ($n  ==  0)  { next; }   # Avoid division by zero
     $ratio = $value / $n;
     print  "ratio is:  $ratio \n";   
}

foreach   $n  (@names) {
     print  "Wassup  $n ?\n";   
     if  ($n   eq  "Doc")  {
           print   "We got our man !!!! \n";
           last;    # exit the foreach loop
     }
} # end of foreach name



More Loop Control: next, last
•To jump to the next iteration of a loop, use next

23

foreach   $n  (@numbers) {
     if  ($n  ==  0)  { next; }   # Avoid division by zero
     $ratio = $value / $n;
     print  "ratio is:  $ratio \n";   
}

foreach   $n  (@names) {
     print  "Wassup  $n ?\n";   
     if  ($n   eq  "Doc")  {
           print   "We got our man !!!! \n";
           last;    # exit the foreach loop
     }
} # end of foreach name



More Loop Control: next, last
•To jump to the next iteration of a loop, use next

•To jump out of a loop completely, use last

23

foreach   $n  (@numbers) {
     if  ($n  ==  0)  { next; }   # Avoid division by zero
     $ratio = $value / $n;
     print  "ratio is:  $ratio \n";   
}

foreach   $n  (@names) {
     print  "Wassup  $n ?\n";   
     if  ($n   eq  "Doc")  {
           print   "We got our man !!!! \n";
           last;    # exit the foreach loop
     }
} # end of foreach name



Conditions in Alternation and Looping 

24

   if ($total > 10e9 || $total < 10e3) {

        print "Unexpected total: $total \n"; 

    }

    if (defined $sum && $avg <= 33.3) {

        $result = 0;

    }

    # Be careful about operator precedence here!

    if (defined $sum && $avg < 33.3 || $avg > 102.2) {

        $result = $sum - $avg;

    }

    

    if (!defined $total) { 

        print "Total is undefined, cannot compute average\n";

    }



Conditions in Alternation and Looping 

•The conditions in an if or while test can be simple, or complex 
(using && || !)

24

   if ($total > 10e9 || $total < 10e3) {

        print "Unexpected total: $total \n"; 

    }

    if (defined $sum && $avg <= 33.3) {

        $result = 0;

    }

    # Be careful about operator precedence here!

    if (defined $sum && $avg < 33.3 || $avg > 102.2) {

        $result = $sum - $avg;

    }

    

    if (!defined $total) { 

        print "Total is undefined, cannot compute average\n";

    }



Conditions in Alternation and Looping 

•The conditions in an if or while test can be simple, or complex 
(using && || !)

•Examples:

24

   if ($total > 10e9 || $total < 10e3) {

        print "Unexpected total: $total \n"; 

    }

    if (defined $sum && $avg <= 33.3) {

        $result = 0;

    }

    # Be careful about operator precedence here!

    if (defined $sum && $avg < 33.3 || $avg > 102.2) {

        $result = $sum - $avg;

    }

    

    if (!defined $total) { 

        print "Total is undefined, cannot compute average\n";

    }



Perl Hashes (Associative Arrays)

25



Perl Hashes (Associative Arrays)
• We’ve seen arrays and the use of integers as index values:  
$items[0], $items[1], etc.

25



Perl Hashes (Associative Arrays)
• We’ve seen arrays and the use of integers as index values:  
$items[0], $items[1], etc.

•  Sometimes it is useful to store <Key, Value> pairs rather 
than using integers to index an array

25



Perl Hashes (Associative Arrays)
• We’ve seen arrays and the use of integers as index values:  
$items[0], $items[1], etc.

•  Sometimes it is useful to store <Key, Value> pairs rather 
than using integers to index an array

• Perl Hashes do just that.  Another name for a Hash is an 
Associative Array

25



Perl Hashes (Associative Arrays)
• We’ve seen arrays and the use of integers as index values:  
$items[0], $items[1], etc.

•  Sometimes it is useful to store <Key, Value> pairs rather 
than using integers to index an array

• Perl Hashes do just that.  Another name for a Hash is an 
Associative Array

• You can build a ‘dictionary’, containing keywords and definitions 
associated with these keywords

25



Perl Hashes (Associative Arrays)
• We’ve seen arrays and the use of integers as index values:  
$items[0], $items[1], etc.

•  Sometimes it is useful to store <Key, Value> pairs rather 
than using integers to index an array

• Perl Hashes do just that.  Another name for a Hash is an 
Associative Array

• You can build a ‘dictionary’, containing keywords and definitions 
associated with these keywords

• Hash syntax is similar to array syntax, but employs different 
symbols

25



Perl Hash Example

26

# define species key, value pairs
%species = (‘human’ => ‘H.sapiens’,
        ‘mouse’ => ‘M.musculus’,
        ‘fruitfly’ => ‘D.melanogaster’);

print $species{‘mouse’}, “\n”;



Perl Hash Example
•Array variables begin with the @ sign, and to index an individual 

item, use [ ]:  @arr = (1,3,5); $arr[3] = 7;

26

# define species key, value pairs
%species = (‘human’ => ‘H.sapiens’,
        ‘mouse’ => ‘M.musculus’,
        ‘fruitfly’ => ‘D.melanogaster’);

print $species{‘mouse’}, “\n”;



Perl Hash Example
•Array variables begin with the @ sign, and to index an individual 

item, use [ ]:  @arr = (1,3,5); $arr[3] = 7;

•Hash variables begin with the % sign. Key,value pairs are 
connected with the double arrow =>

26

# define species key, value pairs
%species = (‘human’ => ‘H.sapiens’,
        ‘mouse’ => ‘M.musculus’,
        ‘fruitfly’ => ‘D.melanogaster’);

print $species{‘mouse’}, “\n”;



Perl Hash Example
•Array variables begin with the @ sign, and to index an individual 

item, use [ ]:  @arr = (1,3,5); $arr[3] = 7;

•Hash variables begin with the % sign. Key,value pairs are 
connected with the double arrow =>

•To index an individual item, use  $hash{'key'}

26

# define species key, value pairs
%species = (‘human’ => ‘H.sapiens’,
        ‘mouse’ => ‘M.musculus’,
        ‘fruitfly’ => ‘D.melanogaster’);

print $species{‘mouse’}, “\n”;



Perl Hash Example
•Array variables begin with the @ sign, and to index an individual 

item, use [ ]:  @arr = (1,3,5); $arr[3] = 7;

•Hash variables begin with the % sign. Key,value pairs are 
connected with the double arrow =>

•To index an individual item, use  $hash{'key'}

•Example:

26

# define species key, value pairs
%species = (‘human’ => ‘H.sapiens’,
        ‘mouse’ => ‘M.musculus’,
        ‘fruitfly’ => ‘D.melanogaster’);

print $species{‘mouse’}, “\n”;



Adding to and Removing from a Hash

27



Adding to and Removing from a Hash

•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.

27



Adding to and Removing from a Hash

•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.
•Example:

27



Adding to and Removing from a Hash

•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.
•Example:

•$species{‘blowfish’} = 'T.rubripes';

27



Adding to and Removing from a Hash

•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.
•Example:

•$species{‘blowfish’} = 'T.rubripes';

•Removing a key, value pair from a hash is done by 
the delete function.

27



Adding to and Removing from a Hash

•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.
•Example:

•$species{‘blowfish’} = 'T.rubripes';

•Removing a key, value pair from a hash is done by 
the delete function.
•Example:

27



Adding to and Removing from a Hash

•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.
•Example:

•$species{‘blowfish’} = 'T.rubripes';

•Removing a key, value pair from a hash is done by 
the delete function.
•Example:

• delete $species{‘human’};

27



Adding to and Removing from a Hash

•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.
•Example:

•$species{‘blowfish’} = 'T.rubripes';

•Removing a key, value pair from a hash is done by 
the delete function.
•Example:

• delete $species{‘human’};

•The exists function can be used to check for existing 
hash entries.

27



Adding to and Removing from a Hash

•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.
•Example:

•$species{‘blowfish’} = 'T.rubripes';

•Removing a key, value pair from a hash is done by 
the delete function.
•Example:

• delete $species{‘human’};

•The exists function can be used to check for existing 
hash entries.
•Example:

27



Adding to and Removing from a Hash

•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.
•Example:

•$species{‘blowfish’} = 'T.rubripes';

•Removing a key, value pair from a hash is done by 
the delete function.
•Example:

• delete $species{‘human’};

•The exists function can be used to check for existing 
hash entries.
•Example:
•if (exists $species{‘human’}) { … }

27



Looking up Keys or  Values in a Hash

28



Looking up Keys or  Values in a Hash

•You can get a list of all values in a hash using the 
values function:

28



Looking up Keys or  Values in a Hash

•You can get a list of all values in a hash using the 
values function:
•@values = values (%hash);

28



Looking up Keys or  Values in a Hash

•You can get a list of all values in a hash using the 
values function:
•@values = values (%hash);

• The values() function takes a hash as an 
argument and returns an array of values.

28



Looking up Keys or  Values in a Hash

•You can get a list of all values in a hash using the 
values function:
•@values = values (%hash);

• The values() function takes a hash as an 
argument and returns an array of values.

•Similarly, a list of all keys in a hash can be obtained 
by using the keys function:

28



Looking up Keys or  Values in a Hash

•You can get a list of all values in a hash using the 
values function:
•@values = values (%hash);

• The values() function takes a hash as an 
argument and returns an array of values.

•Similarly, a list of all keys in a hash can be obtained 
by using the keys function:
•@keys = keys (%hash);

28



Looking up Keys or  Values in a Hash

•You can get a list of all values in a hash using the 
values function:
•@values = values (%hash);

• The values() function takes a hash as an 
argument and returns an array of values.

•Similarly, a list of all keys in a hash can be obtained 
by using the keys function:
•@keys = keys (%hash);

• The keys() function takes a hash as an argument 
and returns an array of values.

28



Stepping through Key, Value pairs in a Hash

29

foreach my $key ( keys %hash ) { 
      my $value = $hash{$key}; 
      print "$key => $value\n";
} 

while ( my ($key, $value) = each(%hash) ) 
{ 
        print "$key => $value\n"; 
}



Stepping through Key, Value pairs in a Hash

• To step through each key, value pair in a hash, 
use a foreach loop and the keys function:

29

foreach my $key ( keys %hash ) { 
      my $value = $hash{$key}; 
      print "$key => $value\n";
} 

while ( my ($key, $value) = each(%hash) ) 
{ 
        print "$key => $value\n"; 
}



Stepping through Key, Value pairs in a Hash

• To step through each key, value pair in a hash, 
use a foreach loop and the keys function:

• TIMTOWTDI:

29

foreach my $key ( keys %hash ) { 
      my $value = $hash{$key}; 
      print "$key => $value\n";
} 

while ( my ($key, $value) = each(%hash) ) 
{ 
        print "$key => $value\n"; 
}



Stepping through Key, Value pairs in a Hash

• To step through each key, value pair in a hash, 
use a foreach loop and the keys function:

• TIMTOWTDI:

•Note that hash elements are not ordered!

29

foreach my $key ( keys %hash ) { 
      my $value = $hash{$key}; 
      print "$key => $value\n";
} 

while ( my ($key, $value) = each(%hash) ) 
{ 
        print "$key => $value\n"; 
}


