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Perl Comment Lines
•  We've seen the she-bang line that specifies the path to the Perl 

interpreter:

• #!/usr/bin/perl
•  Other lines that begin with # are Comments

•  Comments can also start within a line:

• $str = “yada” x 3;  # repeat yada 3 times
•  Use comments to document the purpose of your script and to explain 

segments of code
• # Remember to add a newline (\n) character to output

• print "If you are called 'Sam', some files share your name! \n";

•  If you include good comments in your code, you'll thank yourself when 
you return to the code in six months or a year or more…
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Perl Basic Data Types and Scalar variables

•Numeric data:  integers, floating point, scientific
• Examples:  13,  2.7182818,  2e-40, 1.6e200

•String data:
• Examples:  "Perez Hilton",  "13", "#10 Downing St."

•Variables store pieces of data or information inside a Perl script
•A scalar variable can hold one single piece of data, which can 

be a string or a numeric type:
• $name = "Perez Hilton";
• $lucky_num = 13;
• $letter = "C";
• $e_value = 1.3e-40;

•Scalar variables have names that begin with $
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• Logical operators:  &&  ||  !
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More about Perl Operators
•We've seen that Perl operators have a precedence hierarchy, 

e.g. multiplication has a higher precedence than addition.  
You can use parentheses to alter order of evaluation:  
•$value = (7 + 6) * 3; 

•With logical operations, "short circuit" evaluation is used.  For 
example, in the if statement below, $sum never gets tested…
why?
•$first = "Beverly";
•$sum = 86 + 50;
•if ($first  eq  "Sam" &&  $sum  <=  100) 
{ … }
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•The scope of a variable refers to its lifetime within a script, i.e. 

when and where it is accessible.
•Sometimes you will want to restrict the scope of a variable using 
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variable having the same name.  This will be very important later 
when we learn about subroutines.
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• $year  +=  1;          # add 1 to year
• $year++;               # add 1 to year
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•  These are called autoincrement ++ and autodecrement --
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• Forgetting the  $  at the beginning of a variable name  (bare 
word error)

•  A mistake on the first line of the script (improper specification of 
the Perl interpreter – or possibly a space where it shouldn′t be)

• Forgetting to close an output file (can cause missing output)

•  Saving your script to a different folder than the folder you are 
running it from!
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•The warnings pragma tells the Perl interpreter to output 
warnings when it sees possible typos (common syntax errors 
such as missing punctuation)

•The strict pragma requires all variables to be explicitly 
declared with keywords such as my or our prior to use.

•To write the safer code for web-based scripts, look into using 
taint mode to protect against malicious user input:

•http://www.webreference.com/programming/perl/taint/ 
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Perl Flow Control: Looping with foreach 
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@names = ("Bud", "Cal", "Doc", "Edd");
foreach   $n  (@names) {
     print  "Wassup  $n ?\n";   
     if  ($n   eq  "Doc")  {
          print   "Ha Ha Ha Ha Ha !!!! \n";
     }
}



Perl Flow Control: Looping with foreach 

•The foreach loop is used to step through array 
elements.  Below is an example that uses foreach 
and if.  Notice the matched pairs of curly braces { } 
and the indentation in the code:
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More Loop Control: next, last
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foreach   $n  (@numbers) {
     if  ($n  ==  0)  { next; }   # Avoid division by zero
     $ratio = $value / $n;
     print  "ratio is:  $ratio \n";   
}

foreach   $n  (@names) {
     print  "Wassup  $n ?\n";   
     if  ($n   eq  "Doc")  {
           print   "We got our man !!!! \n";
           last;    # exit the foreach loop
     }
} # end of foreach name
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More Loop Control: next, last
•To jump to the next iteration of a loop, use next

•To jump out of a loop completely, use last
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Conditions in Alternation and Looping 
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   if ($total > 10e9 || $total < 10e3) {

        print "Unexpected total: $total \n"; 

    }

    if (defined $sum && $avg <= 33.3) {

        $result = 0;

    }

    # Be careful about operator precedence here!

    if (defined $sum && $avg < 33.3 || $avg > 102.2) {

        $result = $sum - $avg;

    }

    

    if (!defined $total) { 

        print "Total is undefined, cannot compute average\n";

    }
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•The conditions in an if or while test can be simple, or complex 
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Perl Hash Example

26

# define species key, value pairs
%species = (‘human’ => ‘H.sapiens’,
        ‘mouse’ => ‘M.musculus’,
        ‘fruitfly’ => ‘D.melanogaster’);

print $species{‘mouse’}, “\n”;
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•Adding a key, value pair to a hash is easy.  Of course, 
each key must be distinct.
•Example:

•$species{‘blowfish’} = 'T.rubripes';

•Removing a key, value pair from a hash is done by 
the delete function.
•Example:

• delete $species{‘human’};

•The exists function can be used to check for existing 
hash entries.
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foreach my $key ( keys %hash ) { 
      my $value = $hash{$key}; 
      print "$key => $value\n";
} 

while ( my ($key, $value) = each(%hash) ) 
{ 
        print "$key => $value\n"; 
}
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Stepping through Key, Value pairs in a Hash

• To step through each key, value pair in a hash, 
use a foreach loop and the keys function:

• TIMTOWTDI:

•Note that hash elements are not ordered!
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