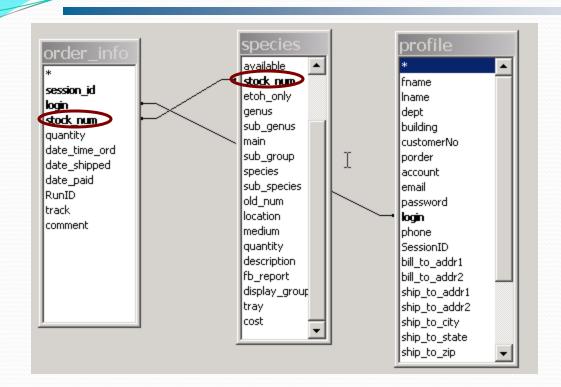

Computing Concepts for Bioinformatics



- Introduction to databases
- Using sqlite
- More database concepts

Relational Database

- A relational database is a collection of data items organized as a set of formally-described tables from which data can be accessed or reassembled in many different ways without having to reorganize the database tables
- The relational database was invented by E. F. Codd at IBM in 1970.
- A relational database is a set of tables containing data fitted into predefined categories
- Each table contains one or more data categories in columns.
- Each row contains a unique instance of data for the categories defined by the columns.
- The standard user and application program interface to a relational database is the structured query language (SQL)

Tables and Relations

	session_id	login	stock_num		
	f9a1eee27700106dc790cd5	lujing	14630-0761-4		
	f9a1eee27700106dc790cd5	lujing	14030-0771.16		
	f9a1eee27700106dc790cd5	lujing	14030-0801.0		
	be95d3245bde56a4ce1375:	gailphilli	14028-0681.3		
	be95d3245bde56a4ce1375:	gailphilli	14028-0681.5		
	be95d3245bde56a4ce1375:	gailphilli	14030-0811.0		
	be95d3245bde56a4ce1375:	gailphilli	15010-1051.0		
	be95d3245bde56a4ce1375:	gailphilli	15010-1051.9		
	be95d3245bde56a4ce1375:	gailphilli	15085-1641.0		
	be95d3245bde56a4ce1375:	gailphilli	15085-1641.4		
	128dedef9738280fb7818cb ⁻	Li Xu	14021-0251.68		
	128dedef9738280fb7818cb ⁻	Li Xu	14021-0251.68		
	3f446453dd77a383b579b3E	MCJB	15010-1051.13		
	c4911dde2e0ceca2f6cc918	hsmalik	15010-0951.0		
ı	c4911dde2e0ceca2f6cc916	hsmalik	15010-0951.14		

■ species : Table									
	genus_group	species_sub	strain	stock_num	genus	sub_genus	main		
•	11010	21	0	1010-0021-0	Scaptodrosophi	scaptodrosophil	victoria		
	11010	31	0	11010-0031.0	Scaptodrosophi	scaptodrosophil	victoria		
	11010	41	0	11010-0041.0	Scaptodrosophi	scaptodrosophil	victoria		
	11010	41	1	11010-0041.1	Scaptodrosophi	scaptodrosophil	victoria		
	11010	45	0	11010-0045.0	Scaptodrosophi	scaptodrosophil	victoria		
	11020	51	0	11020-0051.0	Scaptodrosophi	scaptodrosophil	coracina		
	11030	61	0	11030-0061.0	Scaptodrosophi	scaptodrosophil	latifasciaeformis		
	11030	61	1	11030-0061.1	Scaptodrosophi	scaptodrosophil	latifasciaeformis		

Buzz words you must know

- Schemas or conceptual view
 Describes the overall organization / structure of the database
- Domains
 Describes what values can be stored in the column of a given table
- Constraints
 Rules that govern what values can be stored in a column

Many Many more to follow!!

Structured Query Language (SQL)

- Standard interactive and programming language for getting information from and updating a database
- SQL is both an ANSI and an ISO standard
- Was a non procedural language but from SQL:1999 onwards it became procedural
- SQL can be considered a special purpose language it needs a wrapper to talk to database i.e Perl, C, Java
- Every vendor has its own unique implementation of SQL, even though they all follow the SQL standard there are subtle variances and supported/unsupported calls.
- You Query a database using SQL, if a match is found the data is returned

SQL components

- Data Definition Language (DDL)
 Deals with structural aspect of the database creation, modification, deletion of tables
- Data Manipulation Language (DML)
 This allows modification of the data contained in the tables: insertion, deletion, selection, changing (even aggregation i.e count, sum, average)
- Data Control Language (DCL)
 This deals with maintaining the integrity of the database using permissions, transactions etc.

Getting to know "sqlite"

- Log on to your account on login.hpc.arizona.edu
- Lets get a sample database <u>http://ccp.arl.arizona.edu/dthompso/sql_workshop_files/genotypes.sqlite</u>
- Now lets open the genotype.sqlite with sqlite3 sqlite3 genotype.db
- Type .help
- Type .tables what do you see ?

Some SQL basics

- To store data the database uses tables
- Tables consists of rows and columns
- Column names have to be unique
- CREATE is for generating tables
- ALTER for making changes to the tables
- DROP for deleting the tables
- SELECT is for ?
- UPDATE
- JOIN
- DELETE

Some Common Column types (SQLite)

- Check: http://www.hwaci.com/sw/sqlite/datatype3.html
 For details
- NULL. The value is a NULL value.
- INTEGER
- REAL. The value is a floating point value,
- TEXT.
- BLOB.

Your first query!

- When writing a SQL query, it is common practice to write SQL commands in uppercase.
- The -- command indicates a comment, and the database ignores everything else on the rest of the line.
- The SELECT command tells the database which data fields to retrieve.
- The FROM command tells the database which table to fetch the data from.
- Some databases care about table and column name case, but others don't, so it's best to always use the correct case when referencing tables and columns.
- The end of a query is always marked with a semicolon;.
- -- This query selects the data in all columns
 - -- from the table 'loci'

SELECT * **FROM loci**;

Having fun with SELECT

- Lets jump to a good resources created by David Thompson
- http://ccp.arl.arizona.edu/dthompso/sql_workshop/sql/s elect.html

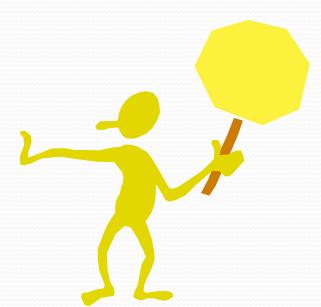
End the torture ... give me a GUI

- You can use many different GUI for sqlite
- SQLite Database browser

http://sourceforge.net/projects/sqlitebrowser/files/sqliteb rowser/1.3/

Mike T's SQLite admin tool

<a href="http://saxmike.com/MySoftware/MySoftware.asp?Menu="http://saxmike.com/MySoftware/MySoftware.asp?Menu="http://saxmike.com/MySoftware/MySoftware.asp?Menu="http://saxmike.com/MySoftware/MySoftware.asp?Menu="http://saxmike.com/MySoftware/MySoftware.asp?Menu="http://saxmike.com/MySoftware/MySoftware.asp?Menu="http://saxmike.com/MySoftware.asp?Menu="http://saxmike.com/MySoftware.asp?Menu="http://saxmike.com/MySoftware.asp?Menu="http://saxmike.com/MySoftware.asp?Menu="http://saxmike.com/MySoftware.asp?Menu="http://saxmike.com/mySoftware.asp?menu="http://saxmike.asp?menu="http://saxmike.asp?menu="http://saxmike.asp?menu="http://saxmike.a


Both are installed in the BLC lab.

Hands on exercise

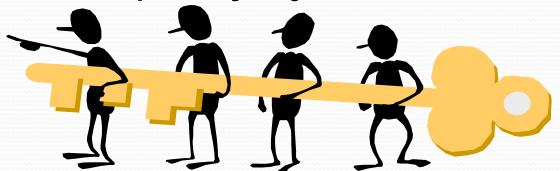
- We will import data from a file into the database http://amadeus.biosci.arizona.edu/~nirav/cds_product.txt
- Create database analysis.db using sqlite3 analysis.db
- Now create a table my_results to store analysis create table my_results (locus TEXT, secondary_tag TEXT, start INTEGER, stop INTEGER);
- sqlite> .mode tabs
- sqlite> .import cds_product.txt my_results
- Have fun with SQL statements select distinct(locus) from my_results; select locus, start from my_results where start > 100;

Caveat

- Covering database design concepts in details is out of scope for this "introductory" section.
- Students wanting to learn more about database design are encouraged to pursue classes in the CS and MIS departments (with blessings from their advisors)
- CSc 460 DATABASE SYSTEMS
- MIS 535 Data Management: Technology and Applications

Some design concepts!

- Database design is not software or database specific
- Basic steps include:
 - Defining the problem or objective
 - Researching the current database
 - Designing the data structures
 - Constructing relationships
 - Implementing rules and constraints
 - Creating views and reports
 - Implementing the design


Normalization

- Is your database normalized ?
- Is that BCNF?
- If you hesitate in answering you are not worthy !'
 (BCNF: Boyce-Codd Normal Form)
- Normalization is a way to efficiently organizing data in your database (almost like closet cleaning)
- The goal is to:
 Eliminate redundancy in data
 Ensure data dependencies

Keys

- A Key is a column or a collection of columns that unique identifies a row in a table
- 2 types of keys: Primary (composite key is a collection of columns)
 Foreign
- In many cases, data table keys are constructed by simply adding an additional field to function as the key
- Can primary key be NULL or have duplicate values?
- Foreign key is a column or a collection of columns in a table that reference a primary key in another table

Index

- Data listed in a table is based on the order it was entered
- As the amount of data increases (number of rows), the database has to sort through more information (becoming slow)
- Index is supplementary to a table and keeps track of the corresponding rows

 Syntax: create index <index name> on <TABLE> (colume to index)

Typical Errors

- Spreadsheet design.
- Too much data.
- Compound fields.
- Missing keys.
- Bad keys.
- Missing relations.
- Unnecessary relationships.

- Incorrect relations.
- Duplicate field names.
- Cryptic field and table names.
- Missing or incorrect business rules.
- Referential integrity.
- Database security.
- International issues.