
ECOL 553L
Perl Subroutines

adapted from: http://oreilly.com/catalog/lperl3/chapter/ch04.html

http://oreilly.com/catalog/lperl3/chapter/ch04.tml
http://oreilly.com/catalog/lperl3/chapter/ch04.tml

Subroutines
•Pieces of script that are “inserted” at a location
when its called
•have their own scope to define variables if needed

•can access global variables
•written to do things that we need to do often (and
maybe change a little)

2

Defining a subroutine
•The keyword sub starts a routine definition
•it is IMMEDIATELY followed by the subroutine
name

3

my $n = 0;

sub student {
 $n += 1; # Global variable $n
 print "Hello, student number $n!\n";
}

Invoking a subroutine
•Also called calling
•two methods (if no operators)

•<name>;
•<name>();
•both the same

4

my $n = 0;

sub student {
 $n += 1; # Global variable $n
 print "Hello, student number $n!\n";
}
student;
student;
student;

Returning a value
•Sometimes we want subroutine to pass back a value from
its invocation
•we do this with the return keyword, followed by a variable
or value
•return $n;

•return 4+7;

5

my $n = 0;

sub student {
 $n += 1; # Global variable $n
 print "Hello, student number $n!\n";
return $n;

}

my %nameID;
foreach my $name (@ARGV){
$nameID{$name} = student;

}

Passing arguments
•sometimes you want to take an argument from the call
•these values come into the subroutine using the @_
special variable
•you pass them just like any other function
•<name>(<arg1>,<arg2>,....);

6

sub max {
 if ($_[0] > $_[1]) {
 return $_[0];
 } else {
 return $_[1];
 }
}

max(1,2);
max(4,-9);
max(4e3,4001);

Private variables
•You can define variables that only exist in the
single instantiation of the subroutine

7

sub max {
 my($a, $b); # new, private variables for this block
 ($a, $b) = @_; # give names to the parameters
 if ($a > $b) { $a } else { $b }
}

What size is @_?
•Turns out @_ can be larger or smaller than
expected
•in our previous version of max, the call to
max(1,2,3) would not throw an error, but would
return a wrong answer
•How would we fix that?

8

What size is @_?
•Turns out @_ can be larger or smaller than
expected
•in our previous version of max, the call to
max(1,2,3) would not throw an error, but would
return a wrong answer
•How would we fix that?

9

sub max {
 if (@_ != 2) {
 die "WARNING! max should get exactly two arguments!\n";
 }
 if($_[0]>$_[1]){ return $_[0]; } else { return $_[1]; }
}

Solution 1: Error

What size is @_?
•Turns out @_ can be larger or smaller than
expected
•in our previous version of max, the call to
max(1,2,3) would not throw an error, but would
return a wrong answer
•How would we fix that?

10

sub max {
 my($max_so_far) = shift @_; # the first one is the largest yet seen
 foreach (@_) { # look at the remaining arguments
 if ($_ > $max_so_far) { # could this one be bigger yet?
 $max_so_far = $_;
 }
 }
 return $max_so_far;
}

Solution 2: Iterative

What size is @_?
•Turns out @_ can be larger or smaller than
expected
•in our previous version of max, the call to
max(1,2,3) would not throw an error, but would
return a wrong answer
•How would we fix that?

11

sub max {
 my $a = shift @_;
 my $b = shift @_;
 my $max = $a;
 if($b > $a){ $max = $b; }
 if(scalar(@_) > 0){
 unshift @_, $max;
 $max = max(@_);
 }
 return $max;
}

Solution 3: Recursive

