ECOL 553L

Perl Subroutines

adapted from: http://oreilly.com/catalog/Iperi3/chapter/ch04.html

http://oreilly.com/catalog/lperl3/chapter/ch04.tml
http://oreilly.com/catalog/lperl3/chapter/ch04.tml

Subroutines

ePieces of script that are “inserted” at a location
when its called

ehave their own scope to define variables if needed
ecan access global variables

ewritten to do things that we need to do often (and
maybe change a little)

Defining a subroutine

e [he keyword sub starts a routine definition

oit is IMMEDIATELY followed by the subroutine
name

my Sn = 0;

sub student {
Sn += 1; # Global variable $n
print "Hello, student number $n!\n";

}

Invoking a subroutine

e Also called calling

otwo methods (if no operators)
e<name>,;

e<name> () ;
ephoth the same

my $n = 0;

sub student {
sn += 1; # Global variable $n
print "Hello, student number $n!\n";
}
student;
student;
student;

Returning a value

eSometimes we want subroutine to pass back a value from
Its invocation

ewe do this with the return keyword, followed by a variable
or value

® return Sn;

® return 4+7;

my Sn = 0;

sub student {
Sn += 1; # Global variable Sn

print "Hello, student number Sn!\n";
return $n;

}

my snamelD;
foreach my Sname (QARGV) {
SnameID{Sname} = student;

}

Passing arguments

esometimes you want to take an argument from the call

ethese values come into the subroutine using the @
special variable

eyou pass them just like any other function
® <name> (<argl>,<arg2>,);

sub max {
if ($_[0] > S_[1]) |
return $ [0]; max(1l,2);
} else { max(4,-9);
return $ [1]; max(4e3,4001);
}
}

Private variables

eYou can define variables that only exist in the
single instantiation of the subroutine

sub max {
my(Sa, S$b); # new, private variables for this block
(Sa, $b) = @ ; # give names to the parameters
if ($a > §b) { $Sa } else { $b }

}

What size is @ ?

e Turns out @_ can be larger or smaller than
expected

®in our previous version of max, the call to
max(1,2,3) would not throw an error, but would
return a wrong answer

eHow would we fix that?

What size is @ ?

e Turns out @_ can be larger or smaller than
expected

®in our previous version of max, the call to
max(1,2,3) would not throw an error, but would
return a wrong answer

eHow would we fix that?

Solution |: Error

sub max {
if (@ t= 2) {
die "WARNING! max should get exactly two arguments!\n";
}
1f($ [0]1>S [1]1){ return $ [0]; } else { return $ [1l]; }
}

What size is @ ?

e Turns out @_ can be larger or smaller than
expected
®in our previous version of max, the call to

max(1,2,3) would not throw an error, but would
return a wrong answer

eHow would we fix that?

Solution 2: lterative

sub max {
my($Smax so far) = shift @ ;
foreach (@) {
if ($_ > $max so far) {
Smax so far = § ;
}
}

return $max so far;

the first one is the largest yet seen
look at the remaining arguments
could this one be bigger yet?

|0

What size is @ ?

e Turns out @_ can be larger or smaller than
expected

®in our previous version of max, the call to

max(1,2,3) would not throw an error, but would
return a wrong answer

eHow would we fix that?

Solution 3: Recursive

sub max {

my $a = shift @ ;

my Sb = shift @ ;

my Smax = $aj;

if($b > S$a){ S$max = $b; }

if(scalar(@) > 0){
unshift @ , S$max;
Smax = max(@);

}

return Smax;

