
ECOL 553L
Advanced REGEX

Special Characters in Regular Expressions

. Match any single character

^ Anchor match at beginning of string

$ Anchor match at end of string

? Match preceding element 0 or 1 time

* Match preceding element 0 or more times

+ Match preceding element 1 or more times

{n,m} Match preceding element n to m times

[] Match any character in character class

[^] Match any character NOT in character class

() Group and capture expression

| Match either expression preceding or following

\ Escape the character immediately following \
2

Review of Pattern Capturing
• Segments of a pattern surrounded by parentheses () are

captured in special temporary variables named $1, $2, $3, etc.

• We can match and capture repeated motifs and use the length
function to compute the number of motifs found:

• if ($seq =~ /(($motif){$min,})/) {
• print "Matched $motif at least $min times\n";
• my $num_matched = length($1)/length($motif);
• print "Found $num_matched $motif\n";

• }

• When writing complex patterns, you can work from left to right or
right to left, adding one pattern element at a time.

•Do not include extraneous white space in your patterns.

• If you are using {min,max} to quantify a part of the pattern that is
a variable, parenthesize the variable to avoid confusion with hash
syntax (as in the above example).

3

Further Review of Pattern Capturing

• What will be output by the following code? Notice that the pattern contains
spaces before \d and before [A-Z]:

• $data = "NG_011606 2126bp DNA linear PRI 01-NOV-2009";
• if ($data =~ /([A-Z]+).+(\d+)bp.+([A-Z]+)/) {

• print "Found $1 $2 $3\n";
• } else {

• print "Expected pattern not found.\n";
• }

• Another way to write the pattern is:

• if ($data =~ /([A-Z]+).+(\s\d+)bp\s.+(\s[A-Z]+)/)

• How can we modify the pattern so that it will also capture the date in this
example?

4

Another Pattern Capturing Example
• Suppose that we want to count and classify files. Assuming that the files

are named with extensions that reflect their types, we can use this code:
• my $dir = $ARGV[0];
• if (!defined $dir) { $dir = "." }
• if (!-d $dir) { die "Usage: $0 dirname\n"; }
• my @files = glob("$dir/*");
• my %ftype; # hash with file ext as key, count as value

• foreach my $f (@files) {
• if ($f =~ /\.([^\.]*)$/) { # match .ext at end of
filename

• print "File: $f\tmatched ext: $1\n";
• $ftype{$1}++;

• } else {
• print STDERR "File $f: No match to pattern\n";

• }
• }

5

Perl Pattern Substitution
• In addition to pattern matching capabilities, Perl can do pattern substitution. For

substitution, you use s in front of the pattern, and provide the substitution string after
the pattern, followed by a final /

• Only the first match to the pattern gets substituted unless the g modifier is specified.

• pattern substitution ($str =~ s/pattern/substitution/):

• $seq =~ s/CAG/1234/;
 # change 1st upper case CAG to 1234

• $seq =~ s/CAG/1234/i;
 # change 1st mixed case CAG to 1234

• $seq =~ s/CAG/1234/g;
 # change all occurrences of upper case CAG to 1234

• $seq =~ s/CAG/1234/gi;
 # change all occurrences of mixed case CAG to 1234

• Using pattern substitution to count occurrences

• Perl pattern substitution also counts the number of substitutions it finds:
•$count = ($seq =~ s/ABC/VWXYZ/);

•$count = ($seq =~ s/ABC/VWXYZ/g);

•$c_count = ($seq =~ s/C/C/gi);

•$g_count = ($seq =~ s/G/G/gi);
6

Pattern Capture and Substitution Example

• You can use pattern capture to slice, dice and rearrange data. For example,
suppose we have a FASTA file of sequences with identifiers that look like this:

• >gi|8923664|ref|NM_017949.1| Homo sapiens CUE domain

• We want to output the Accession number without the version, followed by the GI
number. Using pattern matching/capture, we could do so with the following code:

• open(SFIL, $file) or die "Cannot open $file\n";
• while ($line = <SFIL>) {

• # Capture the GI and Accession/version
• if ($line =~ /^>gi\|(\d+)\|[^\|]+\|([^\|]+/)) {

• $gi = $1; $acc = $2;
• # Substitute .version number with nothing!
• $acc =~ s/\.\d+//;
• print "Accession: $acc GI: $gi\n";

• }
• } # end while <SFIL>

7

Transliteration of characters
• Besides pattern matching and substitution, Perl has an easy way to transliterate

characters in strings. For example, if you wanted to change a telephone number
that uses letters into the numeric equivalent, you could use the code:

• print "Enter word: ";
• $word = <STDIN>;
• chomp($word);
• $tel_num = $word;
• $tel_num =~ tr/ABCDEFGHIJKLMNOPQRSTUVWXYZ/
 22233344455566677778889999/;

• print "Numeric Telephone number is: $tel_num \n";

• Transliteration makes it easy to complement a DNA sequence:
• $seq = "ATGCCGCAGCAGTCAAGTCGTAGTG";
• $seq =~ tr/ACGTacgt/TGCAtgca/;

• Note that with tr you don't need the /g modifier

8

More about Transliteration
•Like pattern substitution, tr with the binding operator returns

the number of characters matched. To count the number of
vowels in a string, you could use:

• my $num_vowels = ($str =~ tr/aeiouAEIOU//);

•In this case, $str is not changed since the second // for tr is
empty.

•There is a /d modifier to tr that will delete matched characters.
To remove all spaces in a string you can use:

• $str =~ tr/ //d;

•You could do the same thing with pattern substitution, but
regular expression evaluation is slow, so if you can do without it,
your code will run faster.

9

Finding repeated patterns using backreferences

• Suppose we had a file of SNP data and wanted to identify homozygous sites, e.g.
AA, CC, GG, or TT. We could write:

• if ($seq =~ /(AA|CC|GG|TT)/) {
• print "Found homozygous $1 \n";

• }

• Remember, though, TIMTOWTDI. We could write instead:
• if ($seq =~ /([ACGT])([ACGT])/ && $1 eq $2) {

• print "Found homozygous $1$2 \n";
• }

• A more compact way to match this is to use the backreference \1 to refer to the first
captured segment:

• If ($seq =~ /([ACGT])\1/) {
• print "Found $1$1 in sequence\n";

• }

• In a substitution, you can reference the first captured segment with \1 within the
first pair of // and $1 within the second pair of // :

• $str =~ s/($pat)\1/$1/;

10

