
ECOL 553L
Regular Expressions



 Review:  Symbols used in Patterns

=~ Binding operator to match pattern against string
e.g.   if ($str  =~ /$pattern/) { … }

/   / Commonly used pattern delimiters

/   /i Case insensitive match

| Alternation, e.g  /C|G/

[  ], [^ ] Character class, e.g.  [CG]  or negated class [^ATN]

* Match 0 or more occurrences of the previous element

+ Match 1 or more occurrences of the previous element

? Match 0 or 1 occurrences of the previous element

{n,m} Match n to m occurrences of the previous element

\d, \s Match digit,  whitespace character 2



Pattern Matching Review
•So far we have learned about the binding operator =~ for pattern 

matching, the /i modifier for case insensitive matches, character 
classes, and quantifiers.  What is matched and what is output by the 
following code?

$seq = "AAACAGCAGCAGCAGCAGTTTNNT";

$cag = "cag";

if ($seq =~ /$cag/) { print "Found $cag \n"; }

if ($seq =~ /$cag/i) { print "Found $cag mixed case \n"; }

if ($seq =~ /T+/) { print "Found at least one T \n"; }

if ($seq =~ /[GC]/) { print "Found G or C \n"; }

if ($seq =~ /[^ACGT]/) { print "Found unknown base \n"; }

if ($seq =~ /T{2,3}/) { print "Found 2-3 consecutive T's \n"; }

if ($seq =~ /A{10,}/) { print "Found at least 10 A's \n"; }

•What are two other ways to write the following pattern?
/0|1|2|3|4|5|6|7|8|9/

3



in grep
•use the -P for perl syntaxed regex
•grep -P “<search>” <file>

4



Anchored Matches
•  If you want to require a match to be at the beginning or end of a 

line, it is possible to anchor the match using the ^ and/or $ 
characters.  Examples:

• $seq =~ /^CAG/;   # match CAG at beginning of $seq
• $seq =~ /AAAAA$/; # match AAAAA at end of $seq

•  Notice that ^ at the beginning of a pattern means something 
different than ^ in a character class such as [^ACGT] or [^0-9]

•You can make sure that an entire string is matched by anchoring 
both the beginning and end of the match:

• $seq =~ /^ATGCCCCAGCAGCAGTTTAAAAAA$/;

5



More new symbols in pattern matching

•  There is a negative binding operator  !~ that means "does not match".  Example:  
• if ($seq !~ /A{10,}$/)  { 

• # Did not find at least 10 A's at end of sequence
• }

• To match any character, use the symbol "." (dot).  To literally match a dot you 
must escape it as  \. 

• Example:  
• if ($seq =~ /^TT.TT/)  {

• # Begins with 2 T's, then any character, then 2 more T's
• } elsif ($seq =~ /\.$/) { 

• # Has . at the end! 
• }

• Parentheses ( ) can be used to group portions of a pattern.  Example:  
• if ($seq =~ /(CAG){30,}/)  {  # Found 30 or more CAG's }

6



Capturing a Matched Pattern
• It is often useful to capture text that matches portions of a pattern

• Any segments of a pattern surrounded by parentheses ( ) are captured in 
special temporary variables

• These special variables are named  $1, $2, etc.

• Example:
• $pseq = "THISMAYBEAPROTEINSEQUENCE";
• if ( $pseq  =~  /([JOUX])/i ) {

• print "$1 is not a valid amino acid residue\n";
• } 

• # How many characters are captured?
• # Why do pattern capture variables not start with $0?
• # Note that $1, $2, etc. will be overwritten by the next 
pattern search!

7



in VIM
•you can also use regex for replacement!
•:%s/<search>/<replace>/g 

•uses \(...\) for groups

•\1, \2 for references

•\0 is whole match

8



in UNIX, sed
•Usage is similar to the search and replace in 
vim (actually its exactly the same)
•sed “s/<search>/<replace>/[g]” <file>

9



Special Characters in Regular Expressions

. Match any single character

^ Anchor match at beginning of string

$ Anchor match at end of string

? Match preceding element 0 or 1 time

* Match preceding element 0 or more times

+ Match preceding element 1 or more times

{n,m} Match preceding element n to m times

[ ] Match any character in character class

[^ ] Match any character NOT in character class

( ) Group and capture expression

| Match either expression preceding or following

\ Escape the character immediately following \
10


