
ECOL 553L
Command Line Args, Perl Docs, File IO

Command line arguments
•Perl scripts can accept arguments that are specified on the command

line when the script is run:

 perl top_hits.pl 5 "bln"

•Perl provides a special array named @ARGV that holds any command
line arguments. Inside the script you can use elements of the @ARGV
array just as you would with any array. Here is an example of using
two command line arguments:

 my $nhits = $ARGV[0];
 my $pat = $ARGV[1];
 my @files = glob("*.$pat");
 …

2

my ($first, $middle, $last);

$first = $ARGV[0];
$middle = $ARGV[1];
$last = $ARGV[2];
print "$first $middle $last you are in trouble!!\n";

More about Command line arguments

• Scripts can accept multiple arguments and Perl automatically places the
arguments into @ARGV:

Josephine

Mary

Wolfe

3

@ARGV

~$> perl read3names.pl "Josephine" "Mary" "Wolfe"

Testing for Command line arguments
•When your script requires command line arguments, you need to

test to make sure the user provided them. The defined function can
be used to do this test. There’s also a shortcut for assigning all
argument variables at once:

4

~$> perl read3names.pl "Josephine" "Mary" "Wolfe"

 my ($first, $middle, $last) = @ARGV;

 if (defined $first && defined $middle && defined $last) {
 print "$first $middle $last you are in trouble!!\n";
 } else {
 print "You did not provide first, middle, and last name\n";
 print "Now you are REALLY in trouble!!!!\n";
 }

Perl documentation
• You can find Perl documentation online, and when Perl

is installed, you should also be able to run the perldoc
program. Try these:
•perldoc perlintro
•perldoc perldoc

• For functions, use perldoc –f functionname
•perldoc –f push
•perldoc –f pop
•perldoc –f chomp
•perldoc –f glob
•(Sometimes Google search results are easier to

understand than perldoc is!)

5

Last thing about command line args

•What if we wanted to give the program a list of files to do
something with?

•think like
 mv file1.pl file2.pl file3.pl newFolder/

•We can pass it a list of undetermined length
• ./test.pl Dan Sergei Mike Noah Susan Nirav ...

•We can use the functions we already know (sort,
scalar) on a copy of this list

6

my @names = @ARGV;
print “you gave me “.scalar(@names).” to sort\n”;
print “In sorted order they are:\n”;
foreach my $name (sort(@names)){

print “\t$name\n”;
}

This is not NECESSARY,
but its a good idea.

More Perl functions
• Perl has many useful functions. We've seen some

already: chomp, push, pop, shift,
unshift. Can you think of any others?

• Functions can take arguments or parameters,
perform some operations on them, and return
results.

• Examples:
•$last_item = pop(@arr);

•@sorted = sort(@arr);

•if (defined($var)) { … }

•chomp($line);

•@keys = keys(%id_hash);

7

Function arguments and results
• When working with functions, it is important to
know what arguments or parameters they
expect as inputs, and what type of result(s) they
return

•You can find this out with:
 perldoc –f functionname

•The length function is easy: it takes a string
argument and returns an integer
•Example:
•$dna = "ATGCGTCAGTCGTAGTCA";

•$dna_len = length($dna);

8

File Input and File Handles
• We’ve used <STDIN> to read keyboard input. To read

from a file in Perl, we need to set up a file handle with the
open function. Standard practice is to make file handle
names all upper case:

• When you open a file, make sure you call the close
function when finished with it. 9

 my $blastfile = "ovine_blast.bln_m9";

 open (BFILE, $blastfile);
 my $nlines = 0;
 while (my $line = <BFILE>) {
 $nlines++;
 }
 print "File $blastfile contains $nmatch matches\n";
 close BFILE;

The die function
•The die function prints a message to the screen and

exits the script:

 $min_hits = 2;
 @files = ("ovine_blast.bln_m9", "bovine_blast.bln_m9");
 foreach $file (@files) {
 open (BFIL, $file) or die "Cannot open $file \n";
 print "Top $min_hits Hits from $file:\n";
 $hits_output = 0;
 while ($hits_output < $min_hits) {
 $lin = <BFIL>;
 print "\t $lin";
 $hits_output++;
 }
 next;
 }

10

File Output
•Writing output to a file from Perl also requires setting up a file handle

with the open function and in case of failure to open, calling the die
function. Notice the ">" prefix to the filename. With output it is
important to remember to close the file or you may lose some data!

 my $blastfile = “ovine_blast.bln_m9”;

 open (BFILE, $blastfile) or die "Cannot open $blastfile \n";

 open (RFILE, ">$blastfile.summary") or die

 "Cannot write $blastfile.summary \n";

 $nmatch = 0;

 while ($line = <BFILE>) {

 $nmatch++;

 }

 print RFILE "File $blastfile contains $nmatch matches\n";

 close RFILE; # Make sure output gets flushed to disk!

11

The Filename Matching function glob

• The glob function matches a collection of files based on a filename
pattern (like * wildcards in Unix). Notice that glob returns an array result:
 $max_hits = 2;

 @files = glob("*.bln_m9");

 if (scalar(@files) == 0) {

 die "No files match *.bln_m9 \n";

 }

 foreach $fil (@files) {

 open (BFIL, $fil) or die "Cannot open $fil\n";

 print "Top $max_hits Hits from $fil:\n";

 $hits_seen = 0;

 while (++$hits_seen < $max_hits) {

 $lin = <BFIL>;

 print "\t $lin";

 }

 next;

 } 12

Better scripting practices…
•Using fixed strings for filenames, numbers, or patterns inside a

script is known as hard-coding, and it is not very flexible! In the
code below if we want to change nhits, we need to edit the script.
To work on all files having names ending in ".bln", we need to
change the script in two places:
 $nhits = 2;

 @files = glob("*.bln_m9 ");
 if (scalar(@files) == 0) {

 die "No files match *.bln_m9 \n";
 }

 foreach $fil (@files) {

 …

 }

•We could use a variable to keep the file extension change to one
line, but we still have to edit the script each time we want to use a
different pattern.

13

Perl File Tests
•Perl can test file attributes: Does a file exist? Is it a directory?

Is it readable? Writable? Empty?

14

if (-e $filename) {
 print "$filename exists \n";
}
if (-d $filename) {
 print "$filename is a directory \n";
}
if (-w $filename) {
 print "$filename is writable \n";
}
if (-z $filename) { # Zero size
 print "$filename is empty \n";
}

Tips for Testing/Debugging Perl Scripts

• If your script does not work as expected:

•Be sure that you are running the script that you have saved
from the editor, and not another version of it.

•Resolve all errors reported by the Perl interpreter
use warnings; use strict;

•Write and test small segments of code at a time

•Print the contents of variables, and check for non-printable
characters within strings, e.g.:

print “str is !$str!\n”;

•Check for the existence of array or hash elements, e.g.:
if (exists $arr[$i] && exists $hash{‘anopheles’}) {

print “population size: $arr[$i]”;

print “hazard: $hash{‘anopheles’}”;

} 15

Homework

• Get started on the assignment handed out in class! It
is more challenging than earlier assignments have
been and you should not wait until the last minute to
work on it. After today's class you should be able to
complete Question 1, part a.

• Optional: Read or Skim "Beginning Perl", chapter 9,
Running and Debugging Perl

• Due to the midterm, there will be No Quiz next
week!! (*yay*)

16

