Computing Concepts for Bioinformatics

- Introduction to databases
- Using sqlite
- More database concepts
Relational Database

- A relational database is a collection of data items organized as a set of formally-described tables from which data can be accessed or reassembled in many different ways without having to reorganize the database tables.
- The relational database was invented by E. F. Codd at IBM in 1970.
- A relational database is a set of tables containing data fitted into predefined categories.
- Each table contains one or more data categories in columns.
- Each row contains a unique instance of data for the categories defined by the columns.
- The standard user and application program interface to a relational database is the structured query language (SQL).
Buzz words you must know

- **Schemas or conceptual view**
 Describes the overall organization / structure of the database

- **Domains**
 Describes what values can be stored in the column of a given table

- **Constraints**
 Rules that govern what values can be stored in a column

Many Many more to follow !!
Structured Query Language (SQL)

- Standard interactive and programming language for getting information from and updating a database
- SQL is both an ANSI and an ISO standard
- Was a non-procedural language but from SQL:1999 onwards it became procedural
- SQL can be considered a special purpose language it needs a wrapper to talk to database i.e. Perl, C, Java
- Every vendor has its own unique implementation of SQL, even though they all follow the SQL standard there are subtle variances and supported/unsupported calls.
- You **Query** a database using SQL, if a match is found the data is returned
SQL components

- **Data Definition Language (DDL)**
 Deals with structural aspect of the database: creation, modification, deletion of tables.

- **Data Manipulation Language (DML)**
 This allows modification of the data contained in the tables: insertion, deletion, selection, changing (even aggregation i.e. count, sum, average).

- **Data Control Language (DCL)**
 This deals with maintaining the integrity of the database using permissions, transactions etc.
Getting to know “sqlite”

- Log on to your account on login.hpc.arizona.edu
- Let's get a sample database
 http://ccp.arl.arizona.edu/dthompso/sql_workshop_files/genotypes.sqlite
- Now let's open the genotype.sqlite with sqlite3
 sqlite3 genotype.db
- Type .help
- Type .tables
 what do you see?
Some SQL basics

- To store data the database uses tables
- Tables consists of rows and columns
- Column names have to be unique
- CREATE is for generating tables
- ALTER for making changes to the tables
- DROP for deleting the tables
- SELECT is for?
- UPDATE
- JOIN
- DELETE
Some Common Column types (SQLite)

- **Check:**
 For details

- **NULL.** The value is a NULL value.
- **INTEGER**
- **REAL.** The value is a floating point value,
- **TEXT.**
- **BLOB.**
When writing a SQL query, it is common practice to write SQL commands in uppercase.

The -- command indicates a comment, and the database ignores everything else on the rest of the line.

The SELECT command tells the database which data fields to retrieve.

The FROM command tells the database which table to fetch the data from.

Some databases care about table and column name case, but others don’t, so it’s best to always use the correct case when referencing tables and columns.

The end of a query is always marked with a semicolon ;.

-- This query selects the data in all columns
-- from the table 'loci'
SELECT * FROM loci;
Having fun with SELECT

- Lets jump to a good resources created by David Thompson
- http://ccp.arl.arizona.edu/dthompson/sql_workshop/sql/select.html
End the torture ... give me a GUI

- You can use many different GUI for sqlite
- SQLite Database browser
 http://sourceforge.net/projects/sqlitebrowser/files/sqlitebrowser/1.3/
- Mike T’s SQLite admin tool
 http://saxmike.com/MySoftware/MySoftware.asp?Menu=MYSOFTWARE
- Both are installed in the BLC lab.
Hands on exercise

- We will import data from a file into the database http://amadeus.biosci.arizona.edu/~nirav/cds_product.txt
- Create database analysis.db using sqlite3 analysis.db
- Now create a table my_results to store analysis

  ```
  create table my_results (locus TEXT, secondary_tag TEXT, start INTEGER, stop INTEGER);
  ```
- `sqlite> .mode tabs`
- `sqlite> .import cds_product.txt my_results`
- Have fun with SQL statements

  ```
  select distinct(locus) from my_results;
  select locus, start from my_results where start > 100;
  ```
Caveat

- Covering database design concepts in details is out of scope for this “introductory” section.
- Students wanting to learn more about database design are encouraged to pursue classes in the CS and MIS departments (with blessings from their advisors)
- CSc 460 DATABASE SYSTEMS
- MIS 535 Data Management: Technology and Applications
Some design concepts!

- Database design is not software or database specific
- Basic steps include:
 - Defining the problem or objective
 - Researching the current database
 - Designing the data structures
 - Constructing relationships
 - Implementing rules and constraints
 - Creating views and reports
 - Implementing the design
Normalization

- Is your database normalized?
- Is that BCNF?
- If you hesitate in answering you are not worthy! (BCNF: Boyce-Codd Normal Form)
- Normalization is a way to efficiently organizing data in your database (almost like closet cleaning)
- The goal is to:
 Eliminate redundancy in data
 Ensure data dependencies
A Key is a column or a collection of columns that uniquely identifies a row in a table.

2 types of keys:
- Primary (composite key is a collection of columns)
- Foreign

In many cases, data table keys are constructed by simply adding an additional field to function as the key.

Can primary key be NULL or have duplicate values?

Foreign key is a column or a collection of columns in a table that reference a primary key in another table.
Data listed in a table is based on the order it was entered.
As the amount of data increases (number of rows), the database has to sort through more information (becoming slow).
Index is supplementary to a table and keeps track of the corresponding rows.
Syntax:
create index <index name> on <TABLE> (columns to index)
create index by_id on patients (id,dob);
Typical Errors

- Spreadsheet design.
- Too much data.
- Compound fields.
- Missing keys.
- Bad keys.
- Missing relations.
- Unnecessary relationships.

- Incorrect relations.
- Duplicate field names.
- Cryptic field and table names.
- Missing or incorrect business rules.
- Referential integrity.
- Database security.
- International issues.